CFPAYMENT API Overview

CFPAYMENT is a payment processing abstraction library for credit card and EFT
gateways. It is based roughly on the Ruby ActiveMerchant library. We have organized
the project into several layers that can be used depending on your needs:

1. Core (basic processing, error handling, responses)
2. Transaction (wrap core with pre/post database storage for reliability, reporting)
3. High-availability (wrap transaction with failover capability)

The configuration of each gateway may be different but all should respond with a single,
normalized response object:

.purchase(money, account, options) => response
.authorize(money, account, options) => response
.capture(money, authorization, options) => response
.void(transactionid, options) => response

Each gateway maps its unique implementation details into a common response object.

The Core and Transaction APIs are designed for most developers who want to do the
most common thing: process payments for a single merchant account against a single
gateway.

LICENSING

CFPAYMENT is licensed under the Apache Software License 2.0, the full text of which
is at http://www.apache.org/licenses/LICENSE-2.0. Generally speaking, the ASL allows
you to use this code in any way you see fit, including in closed-source or commercial
software, so long as the copyright notice stays intact and you clearly mark any changes
you make. While you are not required, please consider contributing enhancements back
to the project so that everyone benefits. That's how open source works!

CORE API

core.init(config)

.createCreditCard() - for credit card transactions with .validate()

.createEFT() - for e-check transactions with .validate()

.createResponse() - normalized response object

.createMoney() - money object handles amounts and currencies, will do conversion
in future

.getGateway() - returns the actual gateway

The core is effectively a factory for generating objects and instantiating gateways.
Actual gateway implementations extend cfpayment.api.gateway.base which provides a
boilerplate interface. The core service is initialized with a config object (struct) having a
path to gateway object, MID, username, password, etc:

cfg_cc = {path: 'itransact.itransact_cc'
,mid: 123456
,username: production
,password: production}

cfg_eft = {path: 'itransact.itransact_eft'
,mid: 223422
,username: test
,password: test
,TestMode: true} // offer way of toggling on a per-gateway basis

cfg_bt = {path: 'braintree.braintree’

,mid: 654321

,username: btree

,password: btree

,failOnAVS: true // additional config options on a per-gateway basis could
support custom capabilities

,failOnCVV: true}

Gateways are designed to be in test mode by default! That is, it requires an explicit
"TestMode: false" configuration to enable live processing of transactions.

Each gateway implementation extends cfpayment.api.gateway.base. The base
component provides the network transmission and error handling for all gateway
implementations in process(). This centralizes the actual network component in a single
location where we can focus on the most robust error handling known to man kind. With
payment processing, it is critically important to be able to recover when things go wrong
to prevent double charges and keep records accurate. My experience with a flaky
gateway company in the past has given me great insight into how to manage these
exceptions.

This could be overridden for a gateway that used a protocol other than HTTP or had
some other unusual requirements. It could also be extended and executed via
super.process() depending on requirements. Most developers will simply call it
normally:

basegw.init()
.process() - package access, handles all network transport and error handling

Individual gateways implement the following:

gateway.purchase(money, account, options) - authorize+capture or a specific method
like some gateways offer

.authorize(money, account, options)

.capture(money, authorization, options)

.void(id, options)

.credit(money, id, options)

.status(options)

.recurring(money, account, options)

.settle(options)

others could be:
.store(account, options) - vault
.unstore(account, options) - delete from vault
.get(id, options) - vault
.status(transactionid, options) - return transaction status

Gateway methods return response objects which normalize the results with an API like:

response.getSuccess() - true/false, did the transaction succeed
.hasError() - if !getSuccess(), is there an error or was it just declined?

.set/getStatus() - get the status code, -1 to 5, defined in core.cfc. This is more
valuable than just success/fail because you probably want to handle connection timeout
differently than declined.

.set/getMessage() - the result in plain text

.set/getResult() - get the raw result from the gateway

.set/getParsedResult() - get the parsed result (after some processing by the
gateway)

.set/getTest() - is this a test transaction? *** not sure about this, or how I want
to handle test transactions in general... each gateway is so different

.isValidAVS(allowblank, allowpostalonlymatch, allowstreetonlymatch)

.isValidCVvV/(allowblank)

.get/setCVVCode() - get or set the result character (single character)

.get/setCVVMessage()

.get/setAVSCode() - get or set the result character (single character)

.get/setAVSMessage()

.get/setAVSPostalMatch()

.get/setAVSStreetMatch()

We use a money object to track the amount to be charged and the currency in which to
charge it. Currently this is more or less a placeholder until we get proper currency
conversion and other features into place but it can be used to pass a different currency
to a gateway in its current implementation.

money.init(cents, currency)
.set/getCents() - we store amount as an integer in "cents"
.getAmount() - getCents() / 100 as a convenience function.
.set/getCurrency() - defaults to USD but can be changed; no auto conversion
currently; uses three-letter ISO codes

Methods like authorize(), purchase(), etc take an options structure for additional
parameters to send to the gateway as either URL or FORM variables depending on GET/
POST. Some examples might include:

External ID

Currency type

IP address

Tax Rate / Tax Amount
Country code

Exceptions and Validation

In general, the API throws errors that can be caught with CFTRY/CFCATCH for
unrecoverable errors introduced by the developer. Our model objects like creditcard and
eft come with a validate() routine which returns an array of errors and helper function
getlsValid() to determine if the user-supplied data is valid. The idea here is that we
throw errors for things that should be corrected during development and validate for
things that can be corrected in production.

The core API throws the following exceptions:

o cfpayment.InvalidGateway - the gateway specified by the config object does not
exist or could not be instantiated. This is probably because your path to the
gateway CFC is wrong. It should be relative to the "gateways" folder so
cfpayment/api/gateways/bogus/gateway.cfc would be specified as
"bogus.gateway".

o cfpayment.InvalidAccount - the account type passed is not supported (e.g., used
a creditcard for a check operation)
cfpayment.MethodNotImplemented - the method has not been written or is not
supported (e.g., calling authorize() for e-checks (which only have purchase
typically) cfpayment.MissingParameter
o cfpayment.MissingParameter.Argument - a required argument was
missing
- cfpayment.MissingParameter.Option - a required attribute in the Options
structure was missing. These are checked in gateway implementations
using the verifyRequiredOptions() method
cfpayment.InvalidResponse
o cfpayment.InvalidResponse.AVS - the returned AVS code (a single
character) was not understood - this may mean a new response type has
been introduced that needs to be added to the response object
o cfpayment.InvalidResponse.CVV - the returned CVV code (a single
character) was not understood - same result as AVS.

If you're not familiar with custom exception type handling in ColdFusion, you can catch
them like so:

<cftry>
<cfset bogusGateway.credit(money = myMoney, account = myAccount, options =
myOptions) />

<cfcatch type="cfpayment.MissingParameter.Argument">
// do something when an argument is missing
</cfcatch>
<cfcatch type="cfpayment.MissingParameter">
// do something if any kind of missing parameter error is throw, .Argument,
.Option, etc
</cfcatch>
<cfcatch type="cfpayment.MethodNotImplemented">
// do something if this method is not implemented
</cfcatch>
<cfcatch type="cfpayment">
// catch any other kind of cfpayment.* error type not specifically caught above
from cfpayment.InvalidResponse.CVV to cfpayment.InvalidGateway
</cfcatch>

</cftry>

TRANSACTION API

The Core API illustrates the simple, building-block approach to payment processing. The
Transaction API was born out of five years of production experience and understanding
the full range of things that can go wrong with any given transaction. Eventually
something will go bump in the night and a transaction will fail. Being able to reconcile
these transactions either automatically or manually is a critical component of ensuring
that your records are accurate and your customers were not charged more than once.

Generally speaking, the Transaction API is simply functionality that executes before and
after the Core API. It requires our database tables to be present. It first inserts the
payment attempt in the database, then attempts to process the payment using the Core
API, then updates the database with the results and returns them. Probably extends the
response object to look more like our current "payment" transfer object which knows

more about its ID, etc. May add methods like:

cfpayment-transaction.init(config, encryptionService) extends core
.set/getRequest() - get the original request

Just wraps the API of the core API, works with a single gateway at a time. Our
implementation could either:

a) .purchase(), .void(), .capture() but that means transaction interface has to have
every method possible in every gateway. OR, use onMissingMethod() to support
any method but requires CF8. Could AOP be another solution here?

b) .transaction("method", params) which runs "method" on the underlying
gateway. Cleaner implementation wise but won't allow swapping from non-trans
to trans cleanly.

Optionally pass in an encryption service. If present, we encrypt account details and
store in database otherwise we just store what we store today (last four, cvv2 response,
avs response, etc). In our case, we want the encryption service to also encrypt details
as soon as they are received and decrypt them only when going to pay. Encryption
service

should be passed into model objects (CC and EFT) to allow them to encrypt and decrypt
their details (based upon available keys, for us, only public key is available on web and
private key is available on pay) but other people could have a single symmetric key
available on a single box).

Encryption service needs to support just three methods:

Anit(...)
.encryptData(...)
.decryptData(...)

However it gets this done, whether it uses built-in encrypt/decrypt functions, uses an
asymmetric Java library or ties in with a hardware encryption device, the implementation
is hidden behind the simple interface which CFPAYMENT understands.

HIGH-AVAILABILITY API

cfpayment-ha.init(array_of_configs, encryptionService) extends transaction
where config is an array of gateway config objects like:

cfg = [{path: 'itransact.itransact_cc'
,mid: 123456
,username: test
,password: test
,priority: 1
,weight: 100}

,{path: 'braintree.braintree’
,mid: 654321
,username: btree
,password: btree
,priority: 2
,weight: 100}

1I;

Exposes more or less same API but internally uses the transaction API to see if charges

fail. If they fail due to a gateway timeout or error condition, it may automatically try the
next gateway. Could be configured to have a "threshold" setting like 0 = no failover, 1
= for gateway failures, 2 = for gateway failures and any declines. Still under
development.

Builds an array of transaction objects internally with a priority or ID to control failover
(including threshold for retrying)

Can also be used for load balancing between multiple gateways which can be used for
various reasons.

Supported Gateways

Name Purchase | Authorize | Capture | Void | Credit | Recurring || Status I;;;céznt
. CC, CHK,
Braintree | Y Y Y Y Y N Y STORAGE
iTransact | Y Y Y Y Y N Y CC, CHK
SkipJack || Y Y Y S) Y N CcC

Y - Full support
N - No support
S - Support coming soon

Planned Support

e Paypal (seems like a must-have for adoption, could convert ASL-licensed
CFPaypal @ http://www.indiankey.com/cfPaypal/; Arjun has tentatively agreed
to help convert his CFpaypal into cfpayment, may also get help from
http://www.coldfusionguy.com/ColdFusion/blog/index.cfm/2007/10/28

PayPalcfc-That-Returns-a-Structure-Instead-of-a-Java-Object or Jared Rypka
Hauer has a kind-of commercial package at http://www.web-relevant.com/web-

relevant/lib/paypalservice/docs/index.cfm but he may be willing to help with the
low-level stuff?)

e Google Checkout would be nice, another "integration", same with Amazon
payments

o Authorize.net, direct, ARB and CIM

System Requirements

e ColdFusion MX 7
e CreateObject()
e Ability to create a mapping OR put the files in a folder off of the webroot.

http://www.indiankey.com/cfPaypal/
http://www.coldfusionguy.com/ColdFusion/blog/index.cfm/2007/10/28/PayPalcfc-That-Returns-a-Structure-Instead-of-a-Java-Object
http://www.coldfusionguy.com/ColdFusion/blog/index.cfm/2007/10/28/PayPalcfc-That-Returns-a-Structure-Instead-of-a-Java-Object
http://www.web-relevant.com/web-relevant/lib/paypalservice/docs/index.cfm
http://www.web-relevant.com/web-relevant/lib/paypalservice/docs/index.cfm

Examples

We have included two examples that show how to use the gateways. They both default
to using the bogus gateway, but can be easily changed with one line of code. To run
them, make sure you can access the cfpayment folder from your webroot, then visit the
examples home page (changing localhost to whatever your workstation/server name
is):

http://localhost/cfpayment/docs/examples/

The Simple Checkout has a somewhat generic credit card form that submits to the bogus
gateway. It shows any errors in both your form fields and gateway results at the top of
the form. The _process.cfm file can be used as an example of how to process form
submissions, but stops short of doing anything with the gateway processing results.

The ColdSpring example shows how you can instantiate the cfpayment service core and
gateway using a coldspring xml file. It also implements a simple AOP logging system
that tracks calls to the gateway and stores them in the request scope. This example
requires that you have coldspring installed and accessible:
http://www.coldspringframework.org/

Notes for Creating a Gateway

http://localhost/cfpayment/docs/examples/coldspring/
http://www.coldspringframework.org/

	CFPAYMENT API Overview
	Supported Gateways
	Planned Support

	System Requirements
	Examples
	Notes for Creating a Gateway

