
PLANNING YOUR 
MIGRATION TO A 
FRAMEWORK 

Brian Ghidinelli
www.ghidinelli.com

#PMFW, Process and Methodology



Launch Day: May 3rd, 2008 

It was a dark and stormy Saturday 
morning…



Why switch to a framework?

• In-house framework 
hit ceiling

• Skills evolved; looking 
to continue learning 

• Cost of bringing 
outside developers up 
to speed



Problems due to…

• Inexperienced developer?
– Developing CF for 10+ years

• Original application not reliable?
– In production for four years, CFC based

• Little or no testing?
– Unit tests, Bug Parties



How I did the work

• Researched options, selected Transfer + 
Coldspring + Model-Glue

• Branched SVN, setup 2nd CF instance
• Converted API first and wrote tests
• Refactored as I learned to take advantage 

of framework



Where I finished

• Launched May 3rd (target: Jan 1)
• Managed not to lose a customer
• ~11 months effort in 8 month span
• Obtained solid understanding of OO, MVC 

and concrete knowledge of MG/CS/TR



What went wrong?

Or, how we turn a train wreck into 
a learning opportunity



Four sins of migration

1. Applications are more complex than you 
remember

2. Coding efficiency drops when learning
3. Misdirected or inadequate testing
4. “While you’re in there…”



#1: Underestimating 
application complexity

Or, don’t trust your gut under any 
circumstances



Improving your estimates

• Treat migration like a consulting project
– Your gut instincts are almost certainly wrong

• Inventory how you interact with database
• Look for user interface and custom tag 

libraries
• Identify external dependencies



Improving your estimates #2

• Look for duplicate or “stinky” code
• Document all non-standard views like 

Ajax, Flex, etc.
• Identify abstracted, re-usable code

– Even great code probably needs refactoring 

• Beware of working solo!



#2: Historical returns are 
no guarantee of future 
productivity

Or, how to spend an entire day on 
five lines of code



Regaining Productivity

• Budget 2x time to learn new paradigms for 
coding, debugging and make decisions

• Is existing code base a jump start?
• Obtain independent analysis of your 

estimates
• Include extra time for unit tests
• Hire a mentor to keep learning curve steep



#3: Inadequate testing

Or, the #!@#$ site is broken!



How to get value from testing

• Decide how to test database early
• Decide on pragmatic test coverage %
• Focus on validating business logic
• Run at least one load test to avoid an 

“aha” moment
– Selenium and OpenSTA support recording 

browser sessions – very straightforward!



#4: “While you’re in 
there…”

Or, how to not paint yourself into a 
tiny corner



Limiting scope creep

• Hold on to backwards compatibility at all 
costs; ability to run in parallel or roll back 
is priceless

• You are switching to the framework to buy 
flexibility and speed so wait for it

• Migration itself will teach you a great deal; 
patience now will be rewarded later



Where am I today?

I’m still alive, but am I still in 
business?



Current status

• Test coverage improved but still < 50%
• Solved performance with DL360 G4s
• Accommodated 60% user growth
• Speed of innovation has increased
• Leverage MG/CS/TR communities as my 

“team”



Would I do it again?

No witty subtitle available at press 
time



Q&A

When are you switching?
Why are you switching?


